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The aim of this study is to develop an analytical model to determine temperature and
thermal stresses distributions in a single plate clutch during the slipping phase. Proposed
expressions enable calculation of temperature and thermal stresses on the contact surface
as well as at any depth inside the friction material and at any instant during the slipping
period. It was investigated how the maximum temperature on the friction surface varies
with the thickness of the friction facings of the clutch disc and the intensity of convective
cooling.
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1. Introduction

The most critical period during engagement of the clutch is the sliding phase, when a high
amount of heat is generated on the contact surfaces due to friction. In order to prevent failure of
the clutch system, it is necessary to estimate the variation of temperature and how it depends
on operating conditions such as load, degree of convective cooling, material properties and
dimensions of the friction elements.

Computation of the temperature field generated during the heating phase (sliding period)
for the friction clutch using analytical and numerical approaches have been developed by many
researchers (Abdullah and Schlattmann, 2012; Grzelczyk and Awrejcewicz, 2012; Faidh-Allah,
2017). In the proposed analytical models, the following were assumed: one-dimensional heat flow,
omission of convective heat exchange, uniform distribution of frictional heat flux on contact sur-
faces, replacement of real friction elements with semi-infinite bodies and constant, linear increase
or parabolic increase of friction torque (Newcomb, 1960, 1961). The developed numerical mo-
dels based on the finite element method allowed taking into account convective heat exchange
to the surrounding environment, and finite dimensions of friction elements and also different
torque profiles. In the paper (Abdullah and Schlattmann, 2014), the change of torque during
the heating phase of the clutch engagement was described by a time-dependent function which
was universal for different engagement modes. The exact, fully-analytical formula to calculate
temperature on the friction surface of a clutch disc during engagement with the friction power
described by the mentioned function was obtained in the reference (Kuciej and Topczewska,
2019). This model was developed based on the solution to the boundary-value problem of heat
conduction formulated for a tribosystem consising of two semi-infinite bodies. Omission of real
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dimensions of friction elements and convective cooling is reasonable when the operating condi-
tions are such that the generated heat affects only a thin layer of the material in the immediate
vicinity of the friction surface. However, these factors are important for long-duration slipping
processes under heavy loads in systems with well-ventilated clutch discs or cases with repetitive
engagements.
In this study, a new analytical model to calculate the distribution of temperature in fric-

tion facings of the clutch disc was developed. The analytical model is built based on the two-
-dimensional boundary-value problem of heat conduction formulated for a rectangular strip with
finite thickness. Additionally, the convective heat exchange with the surrounding environment
on lateral surfaces of frictional elements was taken into account. It should be noted that the
investigation of wear mechanism in automotive clutches and brakes (Al-Alawi et al., 2007) is
necessary, but in this work the wear effect is ignored because the slipping period is very short
and the analysis is achieved only for a single engagement. Therefore, in this case, wear on the
contact surfaces is neglected.

2. Mathematical model

The typical design of the single-plate clutch system consists of a flywheel, pressure plate and a
clutch disc. The clutch disc has two effective frictional facings attached as it is shown in Fig. 1.

Fig. 1. The flow of heat generated on the friction surfaces of a single-plate clutch

During the engagement period, the elements of the clutch system are pressed to each other,
and the friction process occurs on the contact surfaces till the end of slipping phase. Assuming
uniform wear, the moment of friction force changes with slipping time can be written as in the
following (Abdullah and Schlattmann, 2014)

M(t) =M0M
∗(t) M∗(t) =

t

ts

[

2−
( t

ts

)α]

0 ¬ t ¬ ts 0 ¬ α ¬ 1 (2.1)

where α is the index parameter. The initial problem of motion for the considered system is

I
dω(t)

dt
= −M(t) 0 < t ¬ ts ω(0) = ω0 (2.2)

where I = (1/I1 + 1/I2)
−1, ω – relative angular velocity, I1 – moment of inertia of the input,

I2 – moment of inertia of the output, ts – slipping time.
The solution to equation of motion (2.2) with account of Eq. (2.1) gives us
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and the time required to couple the two inertias was calculated from the condition ω(ts) = 0

ts =
(α+ 2)Iω0
(α+ 1)M0

(2.4)

The thermal load applied to the contact surface is directly proportional to the specific power of
friction (Abdullah and Schlattmann, 2014)

q(t) = q0q
∗(t) q0 =

M0ω0
Aa

Aa = 2π(r
2
e − r2i ) 0 ¬ t ¬ ts (2.5)

and
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−
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(2.6)

where Aa is the total nominal area of contact, re, ri – outer and inner radius of the disc clutch.
Based on Eq. (2.6), one can establish the total heat generated in the friction clutch due to
friction during the heating phase

Q = Aa

ts
∫

0

q(t) dt =
Iω20
2

(2.7)

It should be noted that the amount of heat dissipated in the clutch system does not depend on
the value of α parameter.

In order to find the temperature field caused by dissipation of heat in Eq. (2.7), one should
formulate the thermal friction problem accurately. Owing to symmetry of the friction clutch
system (Fig. 1), the temperature field in the friction facing of the clutch disc is uniformly
distributed in the circumferential direction. Therefore, the complexity of the thermal problem
from three dimensions can be reduced to a two-dimensional strip as shown in Fig. 2.

Fig. 2. Scheme of the friction element

The transient temperature distribution T (x, z, t) within the strip will be found from the
solution of the two-dimensional heat conduction equation

∂2T (x, z, t)

∂x2
+
∂2T (x, z, t)

∂z2
=
1

k1

∂T (x, z, t)

∂t

0 < x < l
0 < z < d
0 < t ¬ ts

(2.8)

where k1 = K1/(ρ1c1) – thermal diffusivity of the friction material.

On the upper edge of the strip z = 0, the frictional thermal load q(t) from Eq. (2.6) is applied

K1
∂T (x, z, t)

∂z

∣

∣

∣

∣

∣

z=0

= −γq(t) 0 < x < l 0 < t ¬ ts (2.9)
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where the heat partition coefficient γ which establishes what part of generated heat is absorbed
by this particular element was calculated from the following formula (Charron, 1943)

γ =

√
K1ρ1c1√

K1ρ1c1 +
√
K2ρ2c2

(2.10)

where K – thermal conductivity, ρ – density and c – specific heat capacity of the friction facing
material. The symbols with subscripts 1 refer to the friction material and 2 refer to the second
element of the friction pair (flywheel or pressure plate) materials.

In well-ventilated clutch systems, intensive convective heat exchange with environment takes
place on the exposed surfaces of the friction elements. Thus, on the lateral edges of the strip
x = 0 and x = l the Newton law of cooling is applied

K1
∂T (x, z, t)

∂x

∣

∣

∣

∣

∣

x=0

= h[T (0, z, t) − Ta]

K1
∂T (x, z, t)
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∣

∣

∣

∣

∣

x=l

= h[Ta − T (l, z, t)] 0 < z < d 0 < t ¬ ts
(2.11)

where h is a constant heat transfer coefficient. Additionally, the boundary condition of thermal
insulation on the bottom edge of the strip z = d is

K1
∂T (x, z, t)

∂z

∣

∣

∣

∣

∣

z=d

= 0 0 < x < l 0 < t ¬ ts (2.12)

and the initial condition:

T (x, z, 0) = Ta 0 ¬ x ¬ l 0 ¬ z ¬ d (2.13)

where Ta is ambient temperature included to the problem.

In order to find the temperature field, equation of heat conduction (2.8) was transformed.
This was reduced to a one-dimensional form (Luikov, 1968) by including the conditions of
convective cooling (2.11) in it

∂2T (z, t)

∂z2
− 2h

∗

K1l
[T (z, t)− Ta] =

1

k1

∂T (z, t)

∂t
0 < z < d 0 < t ¬ ts (2.14)

where

T (z, t) =
1

l

l
∫

0
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+
l

2K1

)−1
(2.15)

Introducing dimensionless variables and parameters

Θ(ζ, τ)e−Biτ =
T (z, t)− Ta
T0

T0 =
q0d

K1
ζ =
z

d

τ =
k1t

d2
τs =

k1ts
d2

Bi =
2h∗d2

K1l

(2.16)

equation (2.14) with boundary (2.9), (2.12) and initial (2.13) conditions were transformed into
the following forms
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∂2Θ(ζ, τ)
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(2.17)

Solution of the problem of heat conduction Eqs. (2.17) was found based on Duhamel’s theorem
(Ozisik, 1993)

Θ(ζ, τ) = −
τ
∫

0

q∗(s)eBis
∂

∂τ
Θ0(ζ, τ − s) ds 0 ¬ τ ¬ τs (2.18)

where (Hetnarski and Eslami, 2009)
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1
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(2.19)

The differentiating function Θ0(ζ, τ − s) (2.19) with respect to the dimensionless time τ and
substitution the result to Equation (2.18) gives

Θ(ζ, τ) = J0(τ) + 2
∞
∑

n=1

e−(πn)
2τJ(τ) cos(πnζ) 0 ¬ τ ¬ τs (2.20)

where

J(τ) =

τ
∫

0
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2n2 n = 0, 1, 2, . . . (2.21)

Integral (2.21) with account of function (2.6) can be written in the form

J(τ) =
1
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Integrating by parts (Gradshteyn and Ryzhik, 2014), the following can be obtained
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Owing to the lack of an exact analytical solution to the integral (last Eqs. (2.24)), it had to be
computed numerically by means of an adaptive quadrature method.
Heterogeneity of the obtained above temperature field T (z, t) causes generation of thermal

stresses. These stresses were found based on the model of thermal bending of a thick plate with
unfixed ends (Noda et al., 2000). In accordance to this model, the normal components of the
stress tensor σ can be computed from the following relations

σx(z, t) = σy(z, t) ≡ σ(z, t) σz(z, t) = 0

σ(z, t) = σ0σ
∗(ζ, τ) σ0 =

α1E1T0
1− ν1

0 ¬ z ¬ d 0 ¬ t ¬ ts

σ∗(ζ, τ) = ε∗(ζ, τ)− T ∗(ζ, τ) 0 ¬ ζ ¬ 1 0 ¬ τ ¬ τs
ε∗(ζ, τ) = (4− 6ζ)N(τ) + 6(2ζ − 1)M(τ)

N(τ) =

1
∫

0

T ∗(ζ, τ) dζ M(τ) =

1
∫

0

ζT ∗(ζ, τ) dζ

(2.25)

where α1 – Young’s modulus [MPa], α1 – coefficient of the linear thermal expansion [K
−1],

ν1 – Poisson’s ratio of the friction material and T0 is already determined by Eq. (2.16).

3. Results and discussion

Based on the obtained results from the newly developed analytical solution to the thermal pro-
blem of the friction clutch, the temperature and thermal stresses distributions in the friction
facings of the clutch disc during a single engagement were found. The input parameters used
for the calculations are presented in Table 1. Based on the input parameters, firstly we cal-
culated the total nominal contact area Aa = 0.023m

2, nominal value of specific friction power
q0 = 3.78·106W/m2 (2.6), total heat generated Q = 1.67·104 J (2.7) and Biot number Bi = 0.028
(2.16).

Table 1. Input parameters (Abdullah and Schlattmann, 2014; Abdullah et al., 2015)

Parameter symbol [unit] Value

Coefficient of heat exchange with environment h [W/(m2K)] 40.89

Thickness of friction element d [mm] 3

Thermal conductivity of friction material K1 [Wm/K] 0.6

Thermal conductivity of flywheel and pressure plate K2 [Wm/K] 42

Thermal diffusivity of friction material k1 [m
2/s] 7.16 · 10−7

Thermal diffusivity of flywheel and pressure plate k2 [m
2/s] 1.2 · 10−5

Young’s modulus of friction material E1 [MPa] 300

Coefficient of linear thermal expansion of friction material α1 [K
−1] 12.1 · 10−6

Poisson’s ratio of friction material ν1 [–] 0.25

Internal radius of clutch disc ri [mm] 62.98

External radius of clutch disc re [mm] 87.21

Effective moment of inertia I [kgm2] 0.8333

Nominal moment of friction M0 [Nm] 432

Initial relative angular velocity ω0 [rad/s] 200

Initial temperature Ta [K] 300

The variations of temperature T (z, t) and the corresponding normal thermal stresses σ(z, t)
on the friction surface z = 0mm and inside the element for a few distances from this surface



Temperature and thermal stresses distributions in a dry friction clutch 357

Fig. 3. Evolutions of temperature T (z, t) and corresponding normal thermal stresses σ(z, t) in the
friction surface z = 0mm and inside the friction material at different depths z. Solid lines – results
obtained from the developed analytical solution, dashed lines – corresponding results based on solution

(3.2) from the reference (Kuciej and Topczewska, 2019)
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are presented in Fig. 3. Solid lines illustrate results based on the developed analytical solution
for the above input parameters (Table 1) and dashed lines illustrate the corresponding data
obtained from the solution presented in the reference (Kuciej and Topczewska, 2019) as in the
following form

T (t) = Ta + T0T
∗(τ) 0 ¬ τ ¬ τs (3.1)

and

T ∗(τ) = γ
√
τ
( τ

τs

){ 1√
π

[8

3
− 64(α + 2)
35(α + 1)

( τ

τs

)2]
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)α[ Γ (α+ 2)
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− Γ (α+ 5)

(α + 1)Γ (α + 4.5)

( τ

τs

)2
+

Γ (2α+ 4)

(α+ 1)Γ (2α + 4.5)

( τ

τs

)α+2]}
(3.2)

where Γ (x) is the gamma function. The above relation allow one to calculate the temperature
on the friction surface of the clutch disc during engagement for the considered specific friction
power (2.5) and (2.6). This model (3.2) was developed from the solution to the one-dimensional
boundary-value problem of heat conduction formulated for a tribosystem consisting of two semi-
infinite bodies (Kuciej and Topczewska, 2019). Therefore, it does not take into account the
influence of thickness of the frictional facings and convective cooling on its lateral surfaces.
It can be seen in Fig. 3 that the evolutions of temperature in the friction surface obtained
from both solutions are close to each other. The temperature calculated for semi-spaces (3.2) is
slightly higher, the differences between these results do not exceed ∆T = 5K for all considered
cases.
The effect of the index parameter α on the maximum temperature was investigated under

different working conditions as shown in Fig. 3. Three different values of the index parameter α
were assumed in these calculations. The lowest temperatures and absolute values of thermal
stresses are achieved in the case of α = 0, when the friction process is the longest – it takes
ts = 0.77 s. When the value of α parameter increases, it causes reduction of the sliding time to
ts = 0.64 s for α = 0.5 and ts = 0.58 s for α = 1. This also causes an increase in achieved tem-
peratures and thermal stresses because the total heat generated during all considered processes
is the same (2.7). The maximum values of temperature are found to be Tmax = 376K, 381K,
386K and the absolute stresses |σmax| = 3.13MPa, 3.57MPa, 3.96MPa, corresponding to α = 0,
0.5 and 1, respectively. It was found that the thermal stresses are compressive during the whole
sliding process at the level z = 0mm. The values of temperature and thermal stresses decreased
while going deeper from the contact surface (z = 0) through the thickness. At the same time,
inside the frictional facing, it was found that the thermal stresses are tensile, and their highest
values occurred at about 1mm in depth. At the distance z = 1.5mm, the temperature rise
during the process is almost unnoticeable.
On the left side of Fig. 4, one can be notice the dependency of the maximum temperature

on thickness of the frictional facing d in the range of 0.5 ¬ d ¬ 3mm for different parameter
values α. For the thinnest element d = 0.5mm, the temperature attains the highest maximum
value Tmax = 404K, which is almost equal for all cases. When increasing the thickness d, the
maximum temperature drops and then stabilizes in the range of a ¬ d ¬ 3, where a = 1.29mm,
1.17mm, 1.11mm for α = 0, 0.5 and 1, respectively. This parameter is a theoretical distance
from the heated surface in which the temperature achieves 5% of the maximum value, and it is
called the effective depth of heat penetration (Yevtushenko et al., 2019). It should be noted that
increasing of the frictional facing thickness d causes more intensive convective heat exchange
due to enlargement of the lateral surfaces area. Therefore, the Biot number also varies from
Bi = 7.7 · 10−4 for d = 0.5mm to Bi = 0.028 for d = 3mm. However, these small values of the
Biot number do not significantly affect the temperature in the considered processes. It can be
observed in the right side of Fig. 4 that the maximum temperature monotonically and linearly
decreased to Tmax = 367K, 373K, 378K when the Biot number increased to Bi = 10.



Temperature and thermal stresses distributions in a dry friction clutch 359

Fig. 4. Dependencies of the maximum temperature Tmax(0, t) attained in the friction surface during
sliding on the friction facing d (a) and Biot numer Bi (b) for different values of α parameter

4. Conclusions and remarks

In this research paper, a new analytical solution of the thermal friction problem was presented.
Based on this new solution, one can be reduce the time consumed to calculate distributions of
temperature and thermal stresses in the friction surface and at any position through thickness
of the friction facing of a single-plate clutch at any instant of time during the slipping process.
The results showed how these distributions depend on operational parameters with a special
emphasis put on the influence of thickness of frictional facings and intensity of convective heat
exchange from lateral surfaces of these elements. The results of performed investigation support
the thesis that in a short single engagement of the clutch system, for specified dimensions and
thermophysical properties of materials, the convective cooling does not cause a significant drop
in the maximum temperature. The superficial temperature obtained from the formulated model
for a semi-infinite body (Kuciej and Topczewska, 2019) is almost coinciding in every instant of
time. It is illustrated that thickness of the frictional facing affects the maximum temperature
achieved on the heated surface when it is lower than the effective depth of heat penetration,
which depends on thermal diffusivity of material and the time of slipping.

References

1. Abdullah O.I., Schlattmann J., 2012, Effect of band contact on the temperature distribution
for dry friction clutch, World Academy of Science, Engineering and Technology, International
Science Index, 6, 9, 150-160

2. Abdullah O.I., Schlattmann J., 2014, Computation of surface temperatures and energy dis-
sipation in dry friction clutches for varying torque with time, International Journal of Automotive
Technology, 15, 5, 733-740

3. Abdullah O.I., Akhtar M.J, Schlattmann J., 2015, Investigation of thermo-elastic behavior
of multidisk clutches, Journal of Tribology, 137, 1, 011703

4. Al-Alawi A., Yousif A., Jassim M.A., 2007, An investigation into the behavior of disc brake
wear, Al-Khwarizmi Engineering Journal, 3, 2, 49-66



360 K. Topczewska et al.

5. Charron F., 1943, Partage de la chaleur entre deux corps frottants, Publ. Scient. et Techn.
Ministere Air, article 182

6. Faidh-Allah M.H., 2017, Numerical and finite element contact temperature analysis of friction
material’s type effect on a thermal transient behavior of a single-disc dry clutch, Tribologia, 1,
35-43

7. Gradshteyn I.S., Ryzhik I.M., 2007, Table of Integrals, Series, and Products, Academic press

8. Grzelczyk D., Awrejcewicz J., 2012, Modeling of thermal phenomena in a mechanical friction
clutch, Machine Dynamics Research, 36, 3, 23-28

9. Hetnarski R.B., Eslami R.M., 2009, Thermal Stresses – Advanced Theory and Applications,
Springer, New York

10. Kuciej M., Topczewska K., 2019, Determination of maximum temperature of the friction pad
in the single-disc clutch, Materials Science, 54, 6, 819-826

11. Luikov A.V., 1968, Analytical Heat Diffusion Theory, Academic Press, New York

12. Newcomb T.P., 1960, Temperatures reached in friction clutch transmissions, Journal of Mecha-
nical Engineering Science, 2, 4, 273-287

13. Newcomb T.P., 1961, Calculation of surface temperatures reached in clutches when the torque
varies with time, Journal of Mechanical Engineering Science, 3, 4, 340-347

14. Noda N., Hetnarski R.B., Tanigawa Y., 2000, Thermal Stresses, Lastran Corp., Rochester,
New York

15. Ozisik N.M., 1993, Heat Conduction, John Wiley, New York

16. Yevtushenko A., Kuciej M., Topczewska K., 2019, Effect of the temporal profile of the
friction power on temperature of a pad-disc brake system, Journal of Theoretical and Applied
Mechanics, 57, 2, 416-473

Manuscript received November 26, 2019; accepted for print January 13, 2020


